

400.15-401.0 MHz DOWNLINK BAND

400.15 MHz

VITA = 90 KHz

STARSYS = 50 KHz

A. F.

360 KHz

360 KHz

LEO MSS SHARING IN 401.15 - 401.0 MHz BAND

- VITA AND STARSYS LOCATION SUBJECT TO FINAL COORDINATION
- AIR FORCE DMSP SYSTEM = 710 KHz

137-138 MHz DOWNLINK BAND

LEO MSS SHARING IN 137.0 - 138.0 MHz BAND

- STARSYS / ORBCOMM SHARING VIA DIRECTIONAL ANTENNAS, AND CROSS -**POLARIZATION**
- STARSYS SPREAD-SPECTRUM LIMITED TO 855 MHz DUE TO UPLINK WIDTH
- STARSYS IS SECONDARY IN BOTH AREAS
- P = PRIMARY ALLOCATION

SHARING PLAN SUMMARY

- ACCOMPLISHED: FREQUENCY SHARING PLAN FOR LITTLE LEO
- STARSYS COMPROMISES:
 - REDUCED BANDWIDTH FOR CDMA (855 KHz vs. 1.0 MHz)

IMPACT: REDUCED DATA FLOW/CUSTOMERS

• <u>USE OF SECONDARY</u> ALLOCATION

IMPACT: POTENTIAL LOSS OF SPECTRUM

• <u>INCREASED COMPLEXITY</u> OF SATELLITES AND MOBILE TERMINALS (ON-BOARD PROCESSING, TWO-BAND RECEIVERS)

IMPACT: SIGNIFICANTLY MORE EXPENSIVE SYSTEM

FUTURE SPECTRUM AVAILABILITY

CURRENT: USING CURRENT PROPOSED JOINT SHARING PLAN

CDMA: SHARE PROPOSED BANDWIDTHS

FDMA: SHARE PROPOSED AND SPARE CHANNELS

OTHER: 312-315 MHz & 387-390 MHz SECONDARY

SPECTRUM REUSABLE AROUND THE GLOBE

• FUTURE APPLICANTS

1997: TRANSIT FREQUENCIES

2000: ADDED METSAT FREQUENCIES

WARC: SUCCESS = ADDED SPECTRUM ALLOCATION

Orbital Communications Corporation

An CSC Company

FDMA Sharing Techniques for LEO MSS August 24, 1992

FDMA Techniques for Shared Use of 137.0-138.0 MHz and 148.0 - 149.9 MHz Bands

Orbital Communications Corporation

- 137.0 138.0 MHz -- Coordinated Use of Frequencies Among Spacecraft That Will be Operated to Mutually Visible Ground Stations
 - Channels are Typically Similar Bandwidths and PFDs
 - MSS is Secondary in 35% of the Band
- 148.0 149.9 MHz -- Mobile Earth Stations Have Channels Assigned Dynamically to Eliminate Contention With Other Active Users
- 148.0 149.9 MHz -- Coordinated Locations of Gateway Earth Stations to Ensure Adequate Separation From Existing Fixed and Mobile Receivers

ORBCOMM Proposed Downlink Channelization

Orbital Communications Corporation

Dynamic Channel Activity Assignment System (DCAAS)

Orbital Communications Corporation

- Each Satellite has a Band Scanning Receiver
 - Measures Received Power in a 3 KHz Filter
 - Step Size is 2.5 KHz
 - Scan Time is 5 Seconds
- Each Measurement is Processed in a Weighted Average
 - Filtered for Short Term Statistics [Talker Activity], and
 - Long Term Statistics [Calling Activity]
- Current Set of Operating Channels is Selected from Those with Filtered Power Below a Suitable Threshold
- Changes to the Selected List are Implemented as Soon as Possible
- Satellites in Adjacent Planes Have Orthogonal Ordered Lists
 - Channels Below Threshold are put in Service in This Order
 - Minimizes Concurrent Use by Overlapping Satellites

Derivation of Interference Power Distribution

Orbital Communications Corporation

Antenna Gain Towards LEO MSS Space Station

Transmitter Power

Isolation to MSS Demod Filter

Interference Power Distribution for 1 or more active Emitters Pix(p)

Derivation of Dynmanic Channel Assignment Performance

Orbital Communications Corporation

$$P(\geq n \text{ out of } M) = \sum_{i=n}^{M} P_{ci}^{i} \cdot (1 - p_{ci})^{(M-1)}$$

$$P_{cf} = \sum_{l=0}^{\infty} \frac{e^{-\lambda} \cdot \lambda^{x}}{x!} \int_{0}^{\tau} P_{ix}(y) dy$$

User Characteristics Make 148.0 - 149.9 MHz Sharing Possible

Orbital Communications Corporation

An CSC Company

- LEO MSS Service is Most Needed in Unserved Remote Areas
- Many Transmissions Will be Very Short
- Space Station Receiver is Protected by Dynamic Channel Assignment
- Terrestrial Users Operate, For the Most Part, Well Above Equipment Minimum Sensitivity
- Terrestrial Service Transmitters are Similar or Greater EIRP Density
 - These Transmitters Will Cause Interference to MSS, thus
 - Dynamic Assignment Must Avoid Operational Terrestrial Frequencies

74.dcs

Calculation Methodology For Evaluating Interference Potential From FDMA LEO MSS

Orbital Communications Corporation

- Draft Recommendation on Calculation Methodology Reviewed at CCIR WP/8D, December 1991; Expected to be Finalized at Next 8D Meeting
- Calculation is of the Percentage of Time a Certain PFD Would be Exceeded at a Fixed Station or Base Station in the Mobile Service
- Methodology as Defined:
 - Shows Exceedance Levels to be Acceptable
 - Is Conservative -- No Advantage From Dynamic Assignment Assumed, Exceeding PFD is Assumed to Always Cause Interference
- Sharing Between MSS and Fixed and Mobile is Possible Without Unduly Restrictive Transmission Duration Technical Limitations In Part 2 of the FCC Rules

Worst Case Interference Probability as a Function of Share of Satellite Traffic in Mobile Service Area

Orbital Communications Corporation

An CSC Company

WORST CASE INTERFERENCE PROBABILITY

Share of Uplink Traffic in Service Area

Summary of FDMA Sharing Techniques Applicable to LEO MSS Systems

Orbital Communications Corporation

An CSC Company

- 137.0 138.0 MHz -- Coordination is Feasible Between Existing and Advanced Published Systems. Additional Channels Remain for Future Systems (LEOAS-15)
- 148.0 149.9 MHz -- Mobile Earth Stations Will Employ Operational Techniques to Avoid Active Terrestial User Channels, Eliminating Harmful Interference
 - Total Sharing Potential Driven by Terrestrial Transmitter Activity
 - Future Systems are Compatible With this Technique
- 148.0 149.9 MHz -- Gateway Earth Stations Will be Coordinated on a Case-by-Case Basis with Existing Terrestrial Systems. A need for 8-12 Stations has Been Identified Among All Proponents

76.dcs

INTERNATIONAL NON-VOICE, NON- GEOSTATIONARY SATELLITE SERVICE < 1 GHz

Presentation to the Below 1 GHz Negotiated Rulemaking Committee August 24, 1992

GENERAL CHARACTERISTICS

- International
- Non-Commercial
 - Development
 - Humanitarian Purposes
- Experimental system in place (DCE 1984; PCE 1990)
- Two-LEO system 1000 earth stations

SHARING AND COORDINATION

LIMITED SPECTRUM NOW (possibly more available in future)

- CURRENT USERS U.S. GOVERNMENT
- CURRENT APPLICANTS (Orbcomm, Starsys, VITA)*
- FUTURE APPLICANTS

* Pending FCC determination

"NEGOTIATING" PROCESS

- Share & coordinate with *either* of current applicants plus users
- Meetings w. Orbcomm & Starsys
- Meetings with government users and applicants
- Engineering studies
- Meetings with regulating bodies FCC & NTIA
- Share & Coordinate with both applicants and current users

PROPOSED NON-VOICE, NON-GEOSTATIONARY SATELLITE SERVICE

RESULTS (pending)

Applicants will share with current users

- 137 138 MHz
- 148 149.9 MHz
- 400.15 401 MHz

VITASAT will use

- 90 KHz FDMA Uplink in 148 149.9 MHz Band
- 90 KHz* FDMA Downlink in 400.15 401 MHz Band

* reduced from 100 KHz - Air Force/Starsys